Mã tài liệu: 280652
Số trang: 43
Định dạng: zip
Dung lượng file: 1,125 Kb
Chuyên mục: Tổng hợp
LỜI MỞ ĐẦU
Trong nghiên cứu và xử lý thống kê chuỗi thời gian nhiều chiều, mô hình tự hồi quy là lớp mô hình được nghiên cứu sâu sắc và toàn diện nhất. Việc nghiên cứu và xây dựng lớp mô hình này nhận được sự quan tâm của nhiều tác giả và đã thu những kết quả có giá trị cho dù đây là mô hình tương đối phức tạp. Dưới sự hướng dẫn của thầy giáo Tống Đình Quỳ cùng với sự mong muốn và nổ lực của bản thân tác giả đã tìm hiểu, nghiên cứu mô hình này và tiếp cận với phương pháp ước lượng tham số của mô hình đó do Bradley W. Dickinson đưa ra năm 1979. Đây là một phương pháp hay và thực sự nó đã thúc đẩy tác giả rất nhiều trong bước đầu nghiên cứu của mình cũng như đi đến quyết định chọn đề tài cho đồ án tốt nghiệp Phương pháp Bradley W. Dickinson ước lượng tham số trong mô hình tự hồi quy nhiều chiều.
Nghiên cứu đề tài này trước hết giúp chúng ta có thể hiểu sâu hơn về mô hình tự hồi quy nhiều chiều, một mô hình được sử dụng nhiều trong thực tế, tìm hiểu các phương pháp ước lượng tham số cho mô hình, đặc biệt là phương pháp của tác giả Dickinson. Khi đã xây dựng được mô hình, trong những trường hợp thực tế cụ thể, ta có thể dùng nó để kiểm tra một số giả thiết hay lý thuyết về cơ chế đã sinh ra mô hình, xây dựng những quyết định điều khiển cho quá trình, phân tích và đánh giá để đưa ra những điều chỉnh hợp lý hay dự báo các kết quả tương lai cho quá trình đó.
Nội dung chính của đồ án được trình bày trong 3 chương. Ở chương 1, trong phần đầu tiên sẽ giới thiệu khái quát về chuỗi thời gian một chiều và các khái niệm liên quan đến quá trình tự hồi quy một chiều. Phần tiếp theo sẽ trình bày rõ về quá trình tự hồi quy nhiều chiều, xem xét nó như là một sự mở rộng của quá trình dừng tự hồi quy một chiều và các đặc trưng của nó để làm cơ sở cho việc ước lượng tham số của mô hình trong những phần sau.
Với giả thiết chuỗi thời gian quan sát của chúng ta được cảm sinh bởi một quá trình tự hồi quy nhiều chiều cấp nào đó, chương 2 sẽ trình bày về việc ước lượng tham số cho mô hình tự hồi quy nhiều chiều dựa trên khái niệm tự hiệp phương sai riêng và tự tương quan riêng thông qua phương pháp Durbin-Levinson, một phương pháp rất cơ bản trong ước lượng tham số của mô hình tự hồi quy nhiều chiều. Chúng ta cũng sẽ tìm hiểu một số phương pháp khác như phương pháp bình phương tối thiểu, phương pháp R. H. Jones, phương pháp Nuttall-Strand.
Chương 3 sẽ trình bày cụ thể về phương pháp ước lượng tham số cho mô hình tự hồi quy nhiều chiều của tác giả Bradley W. Dickinson. Phương pháp này là một sự mở rộng của phương pháp Durbin-Levinson và dựa trên một phân tích rất quen thuộc trong toán học, phân tích Cholesky, để ước lượng các tự tương quan riêng. Cuối cùng là kết quả của thuật toán chạy trên máy tính và một số nhận xét rút ra khi so sánh với một số phương pháp khác.
Trong phần kết luận sẽ nhìn lại những điều đã làm được cũng như chưa làm được trong đồ án, những hướng có thể phát triển và mở rộng đồ án. Phần phụ lục sẽ khái quát chương trình chạy trên máy tính, đưa ra một số mô đun chính của chương trình và một số ví dụ minh họa về tính ứng dụng của mô hình và làm rõ một số khái niệm trong đồ án.
Những tài liệu gần giống với tài liệu bạn đang xem
📎 Số trang: 167
👁 Lượt xem: 752
⬇ Lượt tải: 16
📎 Số trang: 3
👁 Lượt xem: 479
⬇ Lượt tải: 16
📎 Số trang: 11
👁 Lượt xem: 347
⬇ Lượt tải: 16
📎 Số trang: 84
👁 Lượt xem: 316
⬇ Lượt tải: 16
📎 Số trang: 84
👁 Lượt xem: 308
⬇ Lượt tải: 16
📎 Số trang: 84
👁 Lượt xem: 405
⬇ Lượt tải: 16
📎 Số trang: 10
👁 Lượt xem: 334
⬇ Lượt tải: 16
📎 Số trang: 6
👁 Lượt xem: 486
⬇ Lượt tải: 17
📎 Số trang: 12
👁 Lượt xem: 416
⬇ Lượt tải: 16
📎 Số trang: 6
👁 Lượt xem: 391
⬇ Lượt tải: 16
📎 Số trang: 17
👁 Lượt xem: 466
⬇ Lượt tải: 16
Những tài liệu bạn đã xem
📎 Số trang: 43
👁 Lượt xem: 302
⬇ Lượt tải: 16