A vector coloring of a graph is an assignment of a vector to each vertex where the presence or absence of an edge between two vertices dictates the value of the inner product of the corresponding vectors. In this paper, we obtain results on orthogonal vector coloring, where adjacent vertices must be assigned orthogonal vectors. We introduce two vector analogues of list coloring along with their chro- matic numbers and characterize all graphs that have (vector) chromatic number two in each case. In this paper, we define and explore possible vector-space analogues of the list- chromatic number of a graph. The first section gives basic definitions and terminology related to graphs, vector representations, and coloring. Section 2 introduces vector coloring and the corresponding definitions of the list-vector and subspace chromatic numbers of a graph and presents some results and related problems. In the final section, we characterize all graphs that have chromatic number two in each case...
Phần bên dưới chỉ hiển thị một số trang ngẫu nhiên trong tài liệu. Bạn tải về để xem được bản đầy đủ
Orthogonal Vector ColoringA vector coloring of a graph is an assignment of a vector to each vertex where the presence or absence of an edge between two vertices dictates the value of the inner product of the corresponding vectors. In this paper, we obtain results onpdf Đăng bởi akvcb
5 stars -
610112 reviews
Thông tin tài liệu
18 trang
Đăng bởi: akvcb -
02/02/2026
Ngôn ngữ: Việt nam, English
5 stars -
"Tài liệu tốt"
by khotrithucso.com,
Written on
02/02/2026
Tôi thấy tài liệu này rất chất lượng, đã giúp ích cho tôi rất nhiều. Chia sẻ thông tin với tôi nếu bạn quan tâm đến tài liệu: Orthogonal Vector Coloring